

2 Marks Questions

1. State the function of BHE and A0 pins of 8086.

Ans - BHE: BHE stands for Bus High Enable. It is available at pin 34 and used to indicate the transfer

of data using data bus D8-D15. This signal is low during the first clock cycle, thereafter it is active.

 A0: A0 is analogous to BHE for the lower byte of the data bus, pinsD0-D7. A0 bit is Low during T1

state when a byte is to be transferred on the lower portion of the bus in memory or I/O operations.

BHE A0 Word / Byte access

0 0 Whole word from even address

0 1 Upper byte from / to odd address

1 0 Lower byte from / to even address

1 1 None

2. How single stepping or tracing is implemented in 8086?

Ans - By setting the Trap Flag (TF) the 8086 goes to single-step mode. In this mode, after the

implementation of every instruction s 8086 generates an internal interrupt and by writing some

interrupt service routine we can show the content of desired registers and memory locations. So it is

useful for debugging the program.

OR

If the trap flag is set, the 8086 will automatically do a type-1 interrupt after each instruction

executes. When the 8086 does a type-1 interrupt, it pushes the flag register on the stack.

OR

The instructions to set the trap flag are:

PUSHF ; Push flags on stack

MOV BP,SP ; Copy SP to BP for use as index

OR WORD PTR[BP+0],0100H ; Set TF flag

 POPF ; Restore flag Register

3. State the role Debugger in assembly language programming.

Ans - Debugger: Debugger is the program that allows the extension of program in single step mode

under the control of the user.

The process of locating & correcting errors using a debugger is known as Debugger.

Some examples of debugger are DOS debug command Borland turbo debugger TD, Microsoft

debugger known as code view cv, etc…

4. Define Macro & Procedure.

Ans - Macro: A MACRO is group of small instructions that usually performs one task. It is a reusable

section of a software program. A macro can be defined anywhere in a program using directive

MACRO &ENDM.

General Form :

MACRO-name MACRO [ARGUMENT 1,……….ARGUMENT N]

MACRO CODIN GOES HERE

ENDM

E.G DISPLAY MACRO 12,13

MACRO STATEMENTS

ENDM

Procedure: A procedure is group of instructions that usually performs one task. It is a reusable

section of a software program which is stored in memory once but can be used as often as

necessary. A procedure can be of two types. 1) Near Procedure 2) Far Procedure

Procedure can be defined as

Procedure_name PROC

Procedure_name
ENDP

For Example

Addition PROC near

Addition ENDP

5. Write ALP for addition of two 8bit numbers. Assume suitable data

Ans –

.Model small

.Data

NUM DB 12H

.Code

START:

MOV AX, @DATA

MOV DS,AX

MOV AL, NUM

MOV AH,13H

ADD AL,AH

MOV AH, 4CH

INT 21H ENDS

END

6. List any four instructions from the bit manipulation instructions of 8086.

Ans - Bit Manipulation Instructions

These instructions are used to perform operations where data bits are involved,

i.e. operations like logical, shift, etc.

Following is the list of instructions under this group −

Instructions to perform logical operation

 NOT − Used to invert each bit of a byte or word.

 AND − Used for adding each bit in a byte/word with the corresponding bit in

another byte/word.

 OR − Used to multiply each bit in a byte/word with the corresponding bit in

another byte/word.

XOR − Used to perform Exclusive-OR operation over each bit in a byte/word with the

corresponding bit in another byte/word.

7. State the use of REP in string related instructions.

Ans –

 This is an instruction prefix which can be used in string instructions.

 It causes the instruction to be repeated CX number of times.

 After each execution, the SI and DI registers are incremented/decremented based on

the DF (Direction Flag) in the flag register and CX is decremented i.e. DF = 1; SI, DI

decrements.

E.g. MOV CX, 0023H

CLD

REP MOVSB

The above section of a program will cause the following string operation

ES: [DI] ← DS: [SI]

SI ← SI + I

DI ← DI + I CX ← CX –

1

to be executed 23H times (as CX = 23H) in auto incrementing mode (as DF is

cleared).

REPZ/REPE (Repeat while zero/Repeat while equal)

 It is a conditional repeat instruction prefix.

 It behaves the same as a REP instruction provided the Zero Flag is set (i.e. ZF =

1).

 It is used with CMPS instruction.

REPNZ/REPNE (Repeat while not zero/Repeat while not equal)

 It is a conditional repeat instruction prefix.

 It behaves the same as a REP instruction provided the Zero Flag is reset (i.e. ZF =

0).

It is used with SCAS instruction.

8. State the function of READY and INTR pin of 8086

Ans –

Ready:

It is used as acknowledgement from slower I/O device or memory. It is Active high signal, when high;

it indicates that the peripheral device is ready to transfer data.

INTR:

This is a level triggered interrupt request input, checked during last clock cycle of each instruction to

determine the availability of request. If any interrupt request is occurred, the processor enters the

interrupt acknowledge cycle.

9. What is role of XCHG instruction in assembly language program? Give example

Ans –

Role of XCHG:

This instruction exchanges the contents of a register with the contents of another register or

memory location.

Example: XCHG AX, BX ; Exchange the word in AX with word in BX.

10. List assembly language programming tools.

Ans –

1. Editors

2. Assembler

3. Linker

4. Debugger.

11. Define Macro. Give syntax.

Ans –

Macro: Small sequence of the codes of the same pattern are repeated frequently at different places

which perform the same operation on the different data of same data type, such repeated code can

be written separately called as Macro.

Syntax:

Macro_name MACRO[arg1,arg2,…..argN)

…..

End

12. Draw flowchart for multiplication of two 16 bit numbers.

Ans –

13. Draw machine language instruction format for Register-to-Register transfer.

Ans –

14. State the use of STC and CMC instruction of 8086.

Ans –

STC – This instruction is used to Set Carry Flag. CF1

CMC – This instruction is used to Complement Carry Flag.

CF ~ CF

15. State the functions of the following pins of 8086 Microprocessor :

i) ALE

ii) M/IO

Ans –

ALE - It stands for address enable latch and is available at pin 25. A positive pulse is

generated each time the processor begins any operation. This signal indicates the

availability of a valid address on the address/data lines.

M/IO - This signal is used to distinguish between memory and I/O operations. When it is

high, it indicates I/O operation and when it is low indicating the memory operation. It is

available at pin 28.

16. State the function of STC and CMC Instruction of 8086.

Ans –

STC – This instruction is used to Set Carry Flag. CF 1

CMC – This instruction is used to Complement Carry Flag. CF ~ CF

17. List the program development steps for assembly language programming.

Ans –

Program Development steps:

1. Defining the problem

2. Algorithm

3. Flowchart

4. Initialization checklist

5. Choosing instructions

6. Converting algorithms to assembly language program

18. Define MACRO with its syntax.

Ans –

Macro: A MACRO is group of small instructions that usually performs one task. It is a

reusable section of a software program. A macro can be defined anywhere in a program

using directive MACRO &ENDM.

Syntax: MACRO-name MACRO [ARGUMENT 1,… ARGUMENT N]

ENDM

19. Write an ALP to Add two 16-bit numbers.

Ans –

data segment a

dw 0202h b dw

0408h c dw ?

data ends

code segment

assume cs:code,ds:data

start:

mov ax,data

mov ds,ax mov

ax,a mov bx,b

add ax,bx mov

c,ax int 03h

code ends

end start

20. State two examples of each, Immediate and based indexed Addressing modes.

Ans –

Immediate Addressing mode:

1. MOV AX, 2000H

2. MOV CL, 0AH

3. ADD AL, 45H

4. AND AX, 0000H

Based indexed Addressing mode:

1. ADD CX, [AX+SI]

2. MOV AX, [AX+DI]

3. MOV AL, [SI+BP+2000]

21. State the use of OF and AF flags in 8086.

Ans –

Auxiliary Carry Flag (AF):

This flag is used in BCD (Binary-coded Decimal) operations.

This flag is set to 1 if there is a CARRY from the lower nibble or BORROW for the lower

nibble in binary representation; else it is set to zero.

Overflow Flag (OF):

This flag will be set (1) if the result of a signed operation is too large to fit in the number of

bits available to represent it, otherwise reset (0).

4 Marks Questions

1. Explain the concept of pipelining in 8086. State the advantages of pipelining (any

two).

Ans –

Pipelining:

1. The process of fetching the next instruction when the present instruction is being

executed is called as pipelining.

2. Pipelining has become possible due to the use of queue.

3. BIU (Bus Interfacing Unit) fills in the queue until the entire queue is full.

4. BIU restarts filling in the queue when at least two locations of queue are vacant.

Advantages of pipelining:

 The execution unit always reads the next instruction byte from the queue in BIU. This

is faster than sending out an address to the memory and waiting for the next

instruction byte to come.

 More efficient use of processor.

 Quicker time of execution of large number of instruction.

In short pipelining eliminates the waiting time of EU and speeds up the processing. -The

8086 BIU will not initiate a fetch unless and until there are two empty bytes in its queue.

8086 BIU normally obtains two instruction bytes per fetch.

2. Compare Procedure and Macros. (4 points).

Ans –

Procedure Macro

Procedures are used for large group of

instructions to be repeated.

Procedures are used for small group of

instructions to be repeated.

Object code is generated only once in

memory.

Object code is generated every time the

macro is called.

CALL & RET instructions are used to call

procedure and return from procedure.

Macro can be called just by writing its

name.

Length of the object file is less. Object file becomes lengthy.

Directives PROC & ENDP are used for

defining procedure.

MACRO and ENDM are used for defining

MACRO.

Directives More time is required for its

execution.

Less time is required for it’s execution.

Procedure can be defined as Macro can be defined as

MACRO-name MACRO

Procedure_name PROC

Procedure_name

 ENDP

[ARGUMENT,……….

ARGUMENT N]

ENDM

For Example Addition PROC

near

Addition ENDP

For Example

Display MACRO msg

ENDM

3. Explain any two assembler directives of 8086.

Ans –

1. DB – The DB directive is used to declare a BYTE -2-BYTE variable – A

BYTE is made up of 8 bits.

Declaration examples:
Byte1 DB 10h

Byte2 DB 255; 0FFh, the max. possible for a BYTE

CRLF DB 0Dh, 0Ah, 24h ;Carriage Return, terminator BYTE

2. DW – The DW directive is used to declare a WORD type variable – A

WORD occupies 16 bits or (2 BYTE).

Declaration examples:

Word DW 1234h

Word2 DW 65535; 0FFFFh, (the max. possible for a WORD)

3. DD – The DD directive is used to declare a DWORD – A DWORD double

word is made up of 32 bits =2 Word’s or 4 BYTE.

Declaration examples:

Dword1 DW 12345678h

Dword2 DW 4294967295 ;0FFFFFFFFh.

4. EQU -

The EQU directive is used to give name to some value or symbol. Each time the

assembler finds the given names in the program, it will replace the name with the

value or a symbol. The value can be in the range 0 through 65535 and it can be

another Equate declared anywhere above or below.

The following operators can also be used to declare an Equate:

THIS BYTE

THIS WORD

THIS DWORD

A variable – declared with a DB, DW, or DD directive – has an address and has

space reserved at that address for it in the .COM file. But an Equate does not have

an address or space reserved for it in the .COM file.

Example:

A – Byte EQU THIS BYTE

DB 10

A_ word EQU THIS WORD

DW 1000

A_ dword EQU THIS DWORD

DD 4294967295

Buffer Size EQU 1024

Buffer DB 1024 DUP (0)

Buffed_ ptr EQU $; actually points to the next byte after the; 1024th byte in

buffer.

5. SEGMENT:

It is used to indicate the start of a logical segment. It is the name given to the

segment. Example: the code segment is used to indicate to the assembler the start

of logical segment.

6. PROC: (PROCEDURE)

It is used to identify the start of a procedure. It follows a name we give the

procedure.

After the procedure the term NEAR and FAR is used to specify the procedure

Example: SMART-DIVIDE PROC FAR identifies the start of procedure named

SMART-DIVIDE and tells the assembler that the procedure is far.

4. Write classification of instruction set of 8086. Explain any one type out of them.

Ans –

classification of instruction set of 8086

 Data Transfer Instructions

 Arithmetic Instructions

 Bit Manipulation Instructions

 String Instructions

 Program Execution Transfer Instructions (Branch & Loop Instructions)

 Processor Control Instructions

 Iteration Control Instructions

 Interrupt Instructions

1) Arithmetic Instructions:

These instructions are used to perform arithmetic operations like addition,
subtraction, multiplication, division, etc.

ADD:
The add instruction adds the contents of the source operand to the destination

operand.

Eg. ADD AX, 0100H ADD AX,

BX

ADD AX, [SI] ADD AX,

[5000H]

ADD [5000H], 0100H ADD

0100H

ADC: Add with Carry

This instruction performs the same operation as ADD instruction, but adds the carry

flag to the result. Eg. ADC

0100H ADC AX, BX ADC

AX, [SI] ADC AX, [5000]

ADC [5000], 0100H

SUB: Subtract

The subtract instruction subtracts the source operand from the destination operand

and the result is left in the destination operand. Eg. SUB

AX, 0100H

SUB AX, BX SUB AX,

[5000H]

SUB [5000H], 0100H

SBB: Subtract with Borrow

The subtract with borrow instruction subtracts the source operand and the borrow flag

(CF) which may reflect the result of the previous calculations, from the destination

operand

Eg. SBB AX, 0100H SBB AX,

BX

SBB AX, [5000H] SBB

[5000H], 0100H

INC: Increment

This instruction increases the contents of the specified Register or memory location

by 1. Immediate data cannot be operand of this instruction.

 Eg. INC AX

 INC [BX]

 INC [5000H]

DEC: Decrement

The decrement instruction subtracts 1 from the contents of the specified register or

memory location. Eg. DEC

AX DEC [5000H]

NEG: Negate

The negate instruction forms 2’s complement of the specified destination in the instruction.

The destination can be a register or a memory location. This instruction can

be implemented by inverting each bit and adding 1 to it. Eg. NEG

AL

AL = 0011 0101 35H Replace number in AL with its 2’s complement AL = 1100

1011 = CBH

CMP: Compare

This instruction compares the source operand, which may be a register or an immediate

data or a memory location, with a destination operand that may be a register or a memory

location

Eg. CMP BX, 0100H CMP AX,

0100H CMP [5000H], 0100H

CMP BX, [SI]

CMP BX, CX

MUL: Unsigned Multiplication Byte or Word

This instruction multiplies an unsigned byte or word by the contents of AL. Eg.

MUL BH ; (AX) (AL) x (BH)

MUL CX ; (DX)(AX) (AX) x (CX) MUL

WORD PTR [SI] ; (DX)(AX) (AX) x ([SI])

IMUL: Signed Multiplication

This instruction multiplies a signed byte in source operand by a signed byte in AL or

a signed word in source operand by a signed word in AX. Eg. IMUL

BH

IMUL CX IMUL [SI]

CBW: Convert Signed Byte to Word

This instruction copies the sign of a byte in AL to all the bits in AH. AH is then said

to be sign extension of AL.

Eg. CBW
AX= 0000 0000 1001 1000 Convert signed byte in AL signed word in AX.

Result in AX = 1111 1111 1001 1000

CWD: Convert Signed Word to Double Word

This instruction copies the sign of a byte in AL to all the bits in AH. AH is then

said

to be sign extension of AL.

 Eg. CWD

Convert signed word in AX to signed double word in DX : AX

 DX= 1111 1111 1111 1111

Result in AX = 1111 0000 1100 0001

DIV: Unsigned division

This instruction is used to divide an unsigned word by a byte or to divide an

 unsigned

double word by a word.

 Eg.

DIV CL ; Word in AX / byte in CL

; Quotient in AL, remainder in AH

DIV CX ; Double word in DX and AX / word

; in CX, and Quotient in AX,

; remainder in DX

2) Processor Control Instructions

These instructions are used to control the processor action by

setting/resetting the flag values.

STC:

It sets the carry flag to 1.

CLC:

It clears the carry flag to 0.

CMC:

It complements the carry flag.

STD:

It sets the direction flag to 1.
If it is set, string bytes are accessed from higher memory address to lower memory

address.

CLD:

It clears the direction flag to 0.

If it is reset, the string bytes are accessed from lower memory address to higher memory

address.

5. Explain memory segmentation in 8086 and list its advantages.(any two)

Ans –

Memory Segmentation:

 In 8086 available memory space is 1MByte.

 This memory is divided into different logical segments and each segment has its
own base address and size of 64 KB.

 It can be addressed by one of the segment registers.

 There are four segments.

Advantages of Segmentation:

 The size of address bus of 8086 is 20 and is able to address 1 Mbytes () of

physical memory.

 The compete 1 Mbytes memory can be divided into 16 segments, each of 64

Kbytes size.

 It allows memory addressing capability to be 1 MB.

 It gives separate space for Data, Code, Stack and Additional Data segment as

Extra segment size.

 The addresses of the segment may be assigned as 0000H to F000H

respectively.

 The offset values are from 00000H to FFFFFH

Segmentation is used to increase the execution speed of computer system so that processor

can able to fetch and execute the data from memory easily and fast.

6. Write an ALP to count the number of positive and negative numbers in array.

Ans –

;Count Positive No. And Negative No.S In Given ;Array Of 16 Bit No.

 ;Assume array of 6 no.s

CODE SEGMENT
ASSUME CS:CODE,DS:DATA START:

MOV AX,DATA

MOV DS,AX MOV

DX,0000H MOV CX,COUNT

MOV SI, OFFSET ARRAY NEXT:

 MOV AX,[SI]

ROR AX,01H JC

NEGATIVE INC DL

JMP COUNT_IT

NEGATIVE: INC DH COUNT_IT: INC SI

INC SI

LOOP NEXT

MOV NEG_COUNT,DL MOV

POS_COUNT,DH MOV AH,4CH

INT 21H

CODE ENDS

DATA SEGMENT

ARRAY DW F423H,6523H,B658H,7612H, 2300H,1559H COUNT

DW 06H

POS_COUNT DB ?

NEG_COUNT DB ? DATA

ENDS

END START

7. Write an ALP to find the sum of series. Assume series of 10 numbers.

Ans –

; Assume TEN , 8 bit HEX numbers

CODE SEGMENT

ASSUME CS:CODE,DS:DATA

START: MOV AX,DATA

MOV DS,AX

LEA SI,DATABLOCK

MOV CL,0AH

UP:MOV AL,[SI]

ADD RESULT_LSB,[SI]

JNC DOWN

INC REULT_MSB

DOWN:INC SI

LOOP UP

CODE ENDS

DATA SEGMENT

DATABLOCK DB 45H,02H,88H,29H,05H,45H,78H,

95H,62H,30H

RESULT_LSB DB 0

RESULT_MSB DB 0

DATA ENDS

END

8. With neat sketches demonstrate the use of re-entrant and recursive procedure.

Ans –

Reentrant Procedure:

A reentrant procedure is one in which a single copy of the program code can be shared by

multiple users during the same period of time. Re-entrance has two key aspects: The

program code cannot modify itself and the local data for each user must be stored

separately.

Recursive procedures:

An active procedure that is invoked from within itself or from within another active

procedure is a recursive procedure. Such an invocation is called recursion. A

procedure that is invoked recursively must have the RECURSIVE attribute specified in the

PROCEDURE statement.

9. Describe mechanism for generation of physical address in 8086 with

suitable example.

Ans –

Fig.: Mechanism used to calculate physical address in 8086

As all registers in 8086 are of 16 bit and the physical address will be in 20 bits. For this

reason the above mechanism is helpful.

Logical Address is specified as segment: offset

Physical address is obtained by shifting the segment address 4 bits to the left and adding

the offset address.

Thus the physical address of the logical address A4FB:4872 is:

A4FB0

 + 4872

A9822

OR

i.e. Calculate physical Address for the given

 CS= 3525H, IP= 2450H.

CS 3 5 2 5 0 Implied Zero

 IP + - 2 4 5 5

Physical Address 3 7 6 A 5 i.e. 376A5H

10. Write ALP to count ODD and EVEN numbers in an array.

Ans –

;Count ODD and EVEN No.S In Given ;Array Of 16 Bit No.
;Assume array of 10 no.s

CODE SEGMENT
ASSUME CS:CODE,DS:DATA

START: MOV AX,DATA
MOV DS,AX

MOV DX,0000H
MOV CX,COUNT
MOV SI, OFFSET ARRAY1

NEXT: MOV AX,[SI]
ROR AX,01H
JC ODD_1
INC DL
JMP COUNT_IT

ODD_1 : INC DH
COUNT_IT: INC SI

INC SI
LOOP NEXT
MOV ODD_COUNT,DH
MOV EVENCNT,DL
MOV AH,4CH
INT 21H

CODE ENDS

DATA SEGMENT
ARRAY1 DW F423H, 6523H, B658H, 7612H, 9875H,

2300H, 1559H, 1000H, 4357H, 2981H
COUNT DW 0AH
ODD_COUNT DB ?

EVENCNT DB ?
DATA ENDS
END START

11. Write ALP to perform block transfer operation of 10 numbers.

Ans –;Assume block of TEN 16 bit no.s
;Data Block Transfer Using String Instruction CODE

SEGMENT

ASSUME CS:CODE,DS:DATA,ES:EXTRA MOV

AX,DATA

MOV DS,AX MOV

AX,EXTRA MOV ES,AX

MOV CX,000AH LEA

SI,BLOCK1

LEA DI,ES:BLOCK2 CLD

REPNZ MOVSW MOV

AX,4C00H INT 21H

CODE ENDS DATA

SEGMENT

BLOCK1 DW 1001H,4003H,6005H,2307H,4569H, 6123H, 1865H,

2345H,4000H,8888H

DATA ENDS EXTRA

SEGMENT

BLOCK2 DW ? EXTRA

ENDS

END

12. Write ALP using procedure to solve equation such as Z= (A+B)*(C+D)

Ans –

; Procedure For Addition

SUM PROC NEAR

ADD AL,BL

RET

SUM ENDP

DATA SEGMENT

NUM1 DB 10H

NUM2 DB 20H

NUM3 DB 30H

NUM4 DB 40H

RESULT DB?

DATA ENDS

CODE SEGMENT
ASSUME CS: CODE,DS:DATA
START:MOV AX,DATA

MOV DS,AX

MOV AL,NUM1

MOV BL,NUM2

CALL SUM

MOV CL,AL

MOV AL, NUM3

MOV BL,NUM4

CALL SUM

MUL CL

MOV RESULT,AX

MOV AH,4CH

INT 21H CODE ENDS END

13. Write ALP using macro to perform multiplication of two 8 Bit Unsigned numbers.

Ans –

; Macro For Multiplication

PRODUCT MACRO FIRST,SECOND

MOV AL,FIRST

MOV BL,SECOND

MUL BL

PRODUCT ENDM

DATA SEGMENT

NO1 DB 05H

NO2 DB 04H

MULTIPLE DW ?

DATA ENDS

CODE SEGMENT

ASSUME CS: CODE,DS:DATA

START:MOV AX,DATA

MOV DS,AX

PRODUCT NO1,NO2

MOV MULTIPLE, AX

MOV AH,4CH

INT 21H

CODE ENDS
END

14. Give the difference between intersegment and intrasegment CALL.

Ans –

Sr.no Intersegment Call Intrasegment Call

1. It is also called Far procedure call. It is also called Near procedure call.

2. A far procedure refers to a procedure
which is in the different code
segment from that of the call
instruction.

A near procedure refers to a
procedure which is in the same code
segment from that of the call
instruction.

3. This procedure call replaces the old
CS:IP pairs with new CS:IP pairs

This procedure call replaces the old IP
with new IP.

4. The value of the old CS:IP pairs

are pushed on to the stack

SP=SP-2 ;Save CS on stack

SP=SP-2 ;Save IP (new offset address
of called procedure)

The value of old IP is pushed

on to the stack.

SP=SP-2 ;Save IP on stack(address of
procedure)

5. More stack locations are required Less stack locations are required

6. Example :- Call FAR PTR Delay Example :- Call Delay

15. Draw flag register of 8086 and explain any four flags.

Ans –

Flag Register of 8086

Conditional /Status Flags

C-Carry Flag : It is set when carry/borrow is generated out of MSB of result. (i.e D7 bit for

8-bit operation, D15 bit for a 16 bit operation).

P-Parity Flag This flag is set to 1 if the lower byte of the result contains even number of 1’s

otherwise it is reset.

AC-Auxiliary Carry Flag This is set if a carry is generated out of the lower nibble, (i.e. From

D3 to D4 bit)to the higher nibble

Z-Zero Flag This flag is set if the result is zero after performing ALU operations. Otherwise

it is reset.

S-Sign Flag This flag is set if the MSB of the result is equal to 1 after performing ALU

operation , otherwise it is reset.

O-Overflow Flag This flag is set if an overflow occurs, i.e. if the result of a signed operation

is large enough to be accommodated in destination register.

Control Flags

T-Trap Flag If this flag is set ,the processor enters the single step execution mode.

I-Interrupt Flag it is used to mask(disable) or unmask(enable)the INTR interrupt. When this

flag is set,8086 recognizes interrupt INTR. When it is reset INTR is masked.

D-Direction Flag It selects either increment or decrement mode for DI &/or SI register during

string instructions.

16. Explain assembly language program development steps.

Ans –

1. Defining the problem: The first step in writing program is to think very carefully about

the problem that the program must solve.

2. Algorithm: The formula or sequence of operations to be performed by the program can be

specified as a step in general English is called algorithm.

3. Flowchart: The flowchart is a graphically representation of the program operation or task.

4. Initialization checklist: Initialization task is to make the checklist of entire variables,

constants, all the registers, flags and programmable ports

5. Choosing instructions: Choose those instructions that make program smaller in size and

more importantly efficient in execution.

Converting algorithms to assembly language program: Every step in the algorithm is

converted into program statement using correct and efficient instructions or group of

instructions.

17. Explain logical instructions of 8086.(Any Four)

Ans –

Logical instructions.

1) AND- Logical AND

Syntax : AND destination, source Operation

Destination ←destination AND source Flags Affected

:CF=0,OF=0,PF,SF,ZF

This instruction AND’s each bit in a source byte or word with the same number bit

in a destination byte or word. The result is put in destination.

Example: AND AX, BX

• AND AL,BL

• AL 1111 1100

• BL 0000 0011

• AL0000 0000 (AND AL,BL)

2) OR – Logical OR

 Syntax :OR destination, source

Operation

Destination OR source

Flags Affected :CF=0,OF=0,PF,SF,ZF

This instruction OR’s each bit in a source byte or word with the corresponding bit in

a destination byte or word. The result is put in a specified destination.

Example :

• OR AL,BL

• AL 1111 1100

• BL 0000 0011

• AL1111 1111

3) NOT – Logical Invert

Syntax : NOT destination

Operation: Destination NOT destination

Flags Affected :None

The NOT instruction inverts each bit of the byte or words at the specified

destination.

Example

NOT BL

BL = 0000 0011

NOT BL gives 1111 1100

4) XOR – Logical Exclusive OR

Syntax : XOR destination, source

Operation : Destination Destination XOR source Flags Affected

:CF=0,OF=0,PF,SF,ZF

This instruction exclusive, OR’s each bit in a source byte or word with the same number bit

in a destination byte or word.

Example(optional)

 XOR AL,BL

• AL 1111 1100

• BL 0000 0011

• AL1111 1111 (XOR AL,BL)

 5)TEST

Syntax : TEST Destination, Source

This instruction AND’s the contents of a source byte or word with the contents of

specified destination byte or word and flags are updated, , flags are updated as result

,but neither operands are changed.

Operation performed:

Flags set for result of (destination AND source)

Example: (Any 1)

TEST AL, BL ; AND byte in BL with byte in AL, no result, Update PF, SF, ZF.

e.g MOV AL, 00000101

TEST AL, 1 ; ZF = 0.

TEST AL, 10b ; ZF = 1

18. Draw functional block diagram of 8086 microprocessor.

Ans –

19. Write an ALP to add two 16-bit numbers.

Ans –

DATA SEGMENT

NUMBER1 DW 6753H

NUMBER2 DW 5856H

SUM DW 0

DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS: DATA

START: MOV AX, DATA

MOV DS, AX

MOV AX, NUMBER1

MOV BX, NUMBER2

ADD AX, BX

MOV SUM, AX

MOV AH, 4CH

INT 21H

CODE ENDS

END START

20. Write an ALP to find length of string.

Ans –

Data Segment

STRG DB 'GOOD MORNING$'

LEN DB ?

DATA ENDS

CODE SEGMENT

START:

ASSUME CS: CODE, DS : DATA

MOV DX, DATA

MOV DS,DX

LEA SI, STRG

MOV CL,00H

MOV AL,'$'

NEXT: CMP AL,[SI]

JZ EXIT

ADD CL,01H

INC SI

JMP

NEXT EXIT: MOV LEN,CL

MOV AH,4CH

INT 21H

CODE ENDS

21. Write an assembly language program to solve p= x2+y2 using Macro.(x and y are 8 bit

numbers.

Ans –

.MODEL SMALL

PROG MACRO a,b

MOV al,a

MUL al

MOV bl,al

MOV al,b

MUL al

ADD al,bl

ENDM

.DATA

x DB 02H

y DB 03H

p DB DUP()

.CODE

START:

MOV ax,data

MOV ds,ax

PROG x, y

MOV p,al

MOV ah,4Ch

Int 21H

END

22. What is pipelining? How it improves the processing speed.

Ans –

 In 8086, pipelining is the technique of overlapping instruction fetch and execution

mechanism.

 To speed up program execution, the BIU fetches as many as six instruction

bytes ahead of time from memory. The size of instruction prefetching queue in

8086 is 6 bytes.

 While executing one instruction other instruction can be fetched. Thus it avoids

the waiting time for execution unit to receive other instruction.

 BIU stores the fetched instructions in a 6 level deep FIFO . The BIU can be

fetching instructions bytes while the EU is decoding an instruction or executing an

instruction which does not require use of the buses.

 When the EU is ready for its next instruction, it simply reads the instruction

from the queue in the BIU.

 This is much faster than sending out an address to the system memory and

waiting for memory to send back the next instruction byte or bytes.

 This improves overall speed of the processor

23. Write an ALP to count no.of 0’s in 16 bit number.

Ans –

DATA SEGMENT

N DB 1237H

Z DB 0

DATA ENDS

CODE SEGMENT

ASSUME DS:DATA, CS:CODE

START:

MOV DX,DATA

 MOV DS,DX

MOV AX, N

MOV CL,08

NEXT: ROL AX,01

 JC ONE

INC Z

ONE: LOOP NEXT

HLT

CODE ENDS

 END START

24. Write an ALP to find largest number in array of elements 10H, 24H, 02H, 05H, 17H.

Ans –DATA SEGMENT

ARRAY DB 10H,24H,02H,05H,17H

LARGEST DB 00H

DATA ENDS

CODE SEGMENT

START:

ASSUME CS:CODE,DS:DATA

MOV DX,DATA

MOV DS,DX

MOV CX,04H

MOV SI ,OFFSET

ARRAY MOV AL,[SI]

UP: INC SI

CMP AL,[SI]

JNC NEXT

MOV AL,[SI]

NEXT: DEC CX

JNZ UP

MOV LARGEST,AL

 MOV AX,4C00H

INT 21H

CODE ENDS

 END START

25. Write an ALP for addition of series of 8-bit number using procedure.

Ans –

DATA SEGMENT

NUM1 DB 10H,20H,30H,40H,50H

RESULT DB 0H

 CARRY DB 0H

DATA ENDS

CODE SEGMENT

ASSUME CS:CODE, DS:DATA

 START: MOV DX,DATA

MOV DS, DX

 MOV CL,05H

MOV SI, OFFSET NUM1

UP: CALL SUM

INC SI

LOOP UP

MOV AH,4CH

 INT 21H

SUM PROC; Procedure to add two 8 bit numbers

 MOV AL,[SI]

ADD RESULT, AL

 JNC NEXT

INC CARRY

NEXT: RET

SUM ENDP

CODE ENDS

 END START

26. Describe re-entrant and recursive procedure with schematic diagram.

Ans –

In some situation it may happen that Procedure 1is called from main program Procrdure2 is

called from procedure1And procrdure1 is again called from procdure2. In this situation

program execution flow reenters in the procedure1. These types of procedures are called re

enterant procedures. The RET instruction at the end of procrdure1 returns to procedure2.

The RET instruction at the end of procedure2 will return the execution to

procedure1.Procedure1 will again executed from where it had stopped at the time of calling

procrdure2 and the RET instruction at the end of this will return the program execution to

main program.

The flow of program execution for re-entrant procedure is as shown in FIG.

27. Differentiate between NEAR and FAR CALLS.

Ans –

28. Explain the concept of memory segmentation in 8086.

Ans –
Memory Segmentation: The memory in an 8086 microprocessor is organized as a

segmented memory. The physical memory is divided into 4 segments namely, - Data

segment, Code Segment, Stack Segment and Extra Segment.

Description:

 Data segment is used to hold data, Code segment for the executable program, Extra

segment also holds data specifically in strings and stack segment is used to store stack data.

 Each segment is 64Kbytes & addressed by one segment register. i.e. CS, DS, ES or SS

 The 16-bit segment register holds the starting address of the segment.

 The offset address to this segment address is specified as a 16-bit displacement (offset)

between 0000 to FFFFH. Hence maximum size of any segment is 216=64K locations.

 Since the memory size of 8086 is 1Mbytes, total 16 segments are possible with each having

64Kbytes.

 The offset address values are from 0000H to FFFFH, so the physical address range from

00000H to FFFFFH.

29. State the Assembler Directives used in 8086 and describe the function

of any two.

Ans –

Assembler directives:

1) DW

2) EQU

3) ASSUME

4) OFFSET

5) SEGMENT

6) EVEN

Function of any two:

1) DW (DEFINE WORD):

The DW directive is used to tell the assembler to define a variable of type word or to

reserve storage locations of type word in memory. The statement MULTIPLIER DW

437AH, for example, declares a variable of type word named MULTIPLIER, and initialized

with the value 437AH when the program is loaded into memory to be run.

2) EQU (EQUATE):

EQU is used to give a name to some value or symbol. Each time the assembler finds the

given name in the program, it replaces the name with the value or symbol you equated with

that name.

Example:

Data SEGMENT

Num1 EQU 50H

Num2 EQU 66H

Data ENDS

Numeric value 50H and 66H are assigned to Num1 and Num2.

30. Identify the Addressing Modes for the following instructions:

I. MOV CL, 34H

II. MOV BX, [4100H]

III. MOV DS, AX

IV. MOV AX, [SI+BX+04]

Ans –

I. MOV CL, 34H: Immediate addressing mode.

II. MOV BX, [4100H]: Direct addressing mode.

III. MOV DS, AX: Resister addressing mode.

IV. MOV AX, [SI+BX+04]: Relative Base Index addressing mode.

31. Explain the concept of pipelining in 8086 microprocessor with diagram.

Ans –

 In 8086, pipelining is the technique of overlapping instruction fetch and execution

mechanism.

 To speed up program execution, the BIU fetches as many as six instruction bytes

ahead of time from memory. The size of instruction prefetching queue in 8086 is 6

bytes.

 While executing one instruction other instruction can be fetched. Thus it avoids the

waiting time for execution unit to receive other instruction.

 BIU stores the fetched instructions in a 6 level deep FIFO. The BIU can be fetching

instructions bytes while the EU is decoding an instruction or executing an

instruction which does not require use of the buses

 When the EU is ready for its next instruction, it simply reads the instruction from the

queue in the BIU

 This is much faster than sending out an address to the system memory and waiting for

memory to send back the next instruction byte or bytes.

 This improves overall speed of the processor.

OR

32. Write an alp to perform block transfer operation of 10 numbers

Ans –

WITHOUT STRING INSTRUCTION

.MODEL SMALL

.DATA

ARR1 DB 00H,01H,02H,03H,04H,05H,06,07H.08H.09H

ARR2 DB 10 DUP(00H)

ENDS

.CODE

START:

MOV AX, @DATA

MOV DS,AX

MOV SI, OFFSET ARR1

MOV DI, OFFSET ARR2

MOV CX ,0000A

BACK: MOV AL,[SI]

MOV [DI],AL

INC SI

INC DI

LOOP BACK

MOV AH,4CH

INT 21H

ENDS

END START

OR

WITH STRING INSTRUCTION

.MODEL SMALL

.DATA

ARR1 DB 00H, 01H,02H,03H,04H,05H,06,07H.08H.09H

ARR2 DB 10 DUP(00H)

ENDS

.CODE

START:MOV AX,@DATA

MOV DS,AX

MOV SI,OFFSET ARR1

MOV DI, OFFSET ARR2

MOV CX,0000A

REP MOVSB

MOV AH,4CH

INT 21H

ENDS

END START

33. Write an ALP to subtract two BCD number’s.

Ans –
.MODEL SMALL

.DATA

NUM1 DB 86H

 NUM2 DB 57H

ENDS

.CODE

START:

MOV AX@,DATA

MOV DS,AX

MOV AL,NUM1

SUB AL,NUM2

DAS

MOV BL,AL // STORE FINAL RESULT IN BL REGISTER

MOV AH,4CH

INT 21H

ENDS

END START

34. Compare procedure and macros (4 points).

Ans –

Sr.No. MACRO PROCEDURE

1 Macro is a small sequence of

code of the same pattern,

repeated frequently at different

places, which perform the same

operation on different data of

the same data type

Procedure is a series of

instructions is to be executed

several times in a program, and

called whenever required.

2 The MACRO code is inserted

into the program, wherever

MACRO is called, by the

assembler

Program control is transferred

to the procedure, when CALL

instruction is executed at run

time.

3 Memory required is more, as

the code is inserted at each

MACRO call

Memory required is less, as the

program control is transferred

to procedure.

4 Stack is not required at the

MACRO call.

Stack is required at Procedure

CALL

5. Less time required for its

execution

Extra time is required for

linkage between the calling

program and called procedure.

6 Parameter passed as the

part of

statement which calls

macro.

Parameters passed in

registers,

memory locations or stack.

7 RET is not used RET is required at the end of

the procedure

8 Macro is called< Macro

NAME> [argument list]

Procedure is called using:

CALL< procedure name>

9 Directives used:

MACRO, ENDM,

Directives used: PROC,

ENDP

35. Differentiate between minimum mode and maximum of 8086 microprocessor.

Ans –

Sr.No. Minimum Mode Maximum Mode

1 MN/MX’ pin is connected

to Vcc. i.e. MN/MX = 1

MN/MX’ pin is connected

to ground. i.e. MN/MX = 0

2 Control system M/ IO’ ,

RD’ , WR’ is available on

8086 directly

Control system M/ IO’ ,

RD’ , WR’ is not available

directly in 8086

3 Single processor in the

minimum mode system

Multiprocessor

configuration in maximum

mode system

4 In this mode, no separate

bus controller is required

Separate bus controller

(8288) is required in

maximum mode

5 Control signals such as

IOR’ , IOW’ , MEMW’ ,

MEMR’ can be generated

using control signals M/IO

, RD , WR which are

available on 8086 directly.

Control signals such as

MRDC’ , MWTC’ ,

AMWC’ , IORC’ , IOWC’

, and AIOWC’ are

generated by bus controller

8288.

6 HOLD and HLDA signals

are available to interface

another master in system

such as DMA controller.

RQ / GTQ and RQ / GT 1

signals are available to

interface another master in

system such as DMA

Controller and

coprocessor 8087

7 This circuit is simpler This circuit is complex

36. Write an ALP for sum of series of 05 number’s.

Ans –
.MODEL SMALL

.DATA

NUM1 DB 10H,20H,30H,40H,50H

RESULT DB 00H

CARRY DB 00H

ENDS

.CODE

START: MOV AX,@DATA

MOV DS, AX

MOV CL,05H

MOV SI, OFFSET NUM1

UP:MOV AL,[SI]

ADD RESULT, AL

JNC NEXT

INC CARRY

NEXT: INC SI

LOOP UP

MOV AH,4CH

INT 21H

ENDS

END START

37. Write an ALP to find largest number from array of 10 number’s.

Ans –
.MODEL SMALL

.DATA

ARRAY DB 02H,04H,06H,01H,05H,09H,0AH,0CH.00H,07H

ENDS

.CODE

START: MOV AX,@DATA

MOV DS,AX

MOV CL,09H

LEA SI,ARRAY

MOV AL,[SI]

UP : INC SI

CMP AL,[SI]

JNC NEXT

MOV AL[SI]

NEXT : DEC CL

JNZ UP

MOV AH,4CH

INT 21H

ENDS

END START

37. Describe re-entrant and Recursive procedure with diagram.

Ans -
A recursive procedure is procedure which calls itself. This results in the procedure call to be

generated from within the procedures again and again.

The recursive procedures keep on executing until the termination condition is reached.

The recursive procedures are very effective to use and to implement but they take a large

amount of stack space and the linking of the procedure within the procedure takes more time

as well as puts extra load on the processor.

2) Re-entrant procedures:

In some situation it may happen that Procedure 1 is called from main program, Procrdure2

is called from procedure1And procedure1 is again called from procdure2. In this situation

program execution flow re-enters in the procedure1. These types of procedures are called

re-entrant procedures.

A procedure is said to be re-entrant, if it can be interrupted, used and re-entered without

losing or writing over anything.

38. Explain MACRO with suitable example. List four advantages of it.
Ans –

 Macro is a small sequence of code of the same pattern, repeated frequently at

different places, which perform the same operation on different data of the same

data type

 The MACRO code is inserted into the program, wherever MACRO is called, by the

assembler

 Memory required is more, as the code is inserted at each MACRO call

Syntax: Macro_name MACRO [arg1,arg2,. ... argN)

.....

endM

Example:

.MODEL SMALL

PROG MACRO A,B

MOV AL,A

MUL AL MOV

BL,AL MOV

AL,B MUL AL

ADD AL,BL

ENDM

.DATA

X DB 02H Y

DB 03H P DB

DUP()

ENDS

.CODE

START:

MOV AX,DATA

MOV DS,AX

PROG X, Y MOV

P,AL MOV

AH,4CH INT 21H

END START

ENDS

Advantages of Macro:

1) Program written with macro is more readable.

2) Macro can be called just writing by its name along with parameters, hence no extra

code is required like CALL & RET.

3) Execution time is less because of no linking and returning to main program.

4) Finding errors during debugging is easier.

6 Marks Questions

1. Draw architectural block diagram of 8086 and describe its register organization.

Ans –

Register Organization of 8086

1. AX (Accumulator) – Used to store the result for arithmetic / logical operations

2. BX – Base – used to hold the offset address or data

3. CX – acts as a counter for repeating or looping instructions.

4. DX – holds the high 16 bits of the product in multiply (also handles divide

operations)

5. CS – Code Segment – holds base address for all executable instructions in a

program

6. SS - Base address of the stack

7. DS – Data Segment – default base address for variables

8. ES – Extra Segment – additional base address for memory variables in extra

segment.

9. BP – Base Pointer – contains an assumed offset from the SS register.

10. SP – Stack Pointer – Contains the offset of the top of the stack.

11. SI – Source Index – Used in string movement instructions. The source string is

pointed to by the SI register.

12. DI – Destination Index – acts as the destination for string movement instructions

13. IP – Instruction Pointer – contains the offset of the next instruction to be executed.

14. Flag Register – individual bit positions within register show status of CPU or results

of arithmetic operations.

2. Demonstrate in detail the program development steps in assembly language

programming.

Ans –

Program Development steps

1. Defining the problem

The first step in writing program is to think very carefully about the

problem that you want the program to solve.

2. Algorithm

The formula or sequence of operations or task need to perform by your

program can be specified as a step in general English is called algorithm.

3. Flowchart

The flowchart is a graphically representation of the program operation

or task.

4. Initialization checklist

Initialization task is to make the checklist of entire variables, constants,

all the registers, flags and programmable ports.

5. Choosing instructions

We should choose those instructions that make program smaller in size

and more importantly efficient in execution.

6. Converting algorithms to assembly language program

Every step in the algorithm is converted into program statement using

correct and efficient instructions or group of instructions.

3. Illustrate the use of any three branching instructions.
Ans –

BRANCH INSTRUCTIONS

Branch instruction transfers the flow of execution of the program to a new

address specified in the instruction directly or indirectly. When this type of

instruction is executed, the CS and IP registers get loaded with new values of

CS and IP corresponding to the location to be transferred. Unconditional Branch

Instructions :

1. CALL : Unconditional Call

The CALL instruction is used to transfer execution to a subprogram or

procedure by storing return address on stack There are two types of calls- NEAR

(Inter-segment) and FAR(Intra-segment call). Near call refers to a procedure call

which is in the same code segment as the call instruction and far call refers to a

procedure call which is in different code segment from that of the call

 instruction.

Syntax: CALL procedure_name

2. RET: Return from the Procedure.

At the end of the procedure, the RET instruction must be executed. When it is

executed, the previously stored content of IP and CS along with Flags are

retrieved into the CS, IP and Flag registers from the stack and execution of the

main program continues further.

Syntax :RET

3. JMP: Unconditional Jump

This instruction unconditionally transfers the control of execution to the specified

address using an 8-bit or 16-bit displacement. No Flags are affected by this

instruction.

Syntax : JMP Label

4. IRET: Return from ISR

When it is executed, the values of IP, CS and Flags are retrieved from the stack

to continue the execution of the main program.

Syntax: IRET

Conditional Branch Instructions

When this instruction is executed, execution control is transferred to the address

specified relatively in the instruction

1. JZ/JE Label

Transfer execution control to address ‘Label’, if ZF=1.

2. JNZ/JNE Label

Transfer execution control to address ‘Label’, if ZF=0

3. JS Label

Transfer execution control to address ‘Label’, if SF=1.

4. JNS Label

Transfer execution control to address ‘Label’, if SF=0.

5. JO Label

Transfer execution control to address ‘Label’, if OF=1.

6. JNO Label

Transfer execution control to address ‘Label’, if OF=0.

7. JNP Label

Transfer execution control to address ‘Label’, if PF=0.

8. JP Label

Transfer execution control to address ‘Label’, if PF=1.

9. JB Label

Transfer execution control to address ‘Label’, if CF=1.

10. JNB Label

Transfer execution control to address ‘Label’, if CF=0.

11. JCXZ Label

Transfer execution control to address ‘Label’,

if CX=0

Conditional LOOP Instructions.

12. LOOP Label :

Decrease CX, jump to label if CX not zero.

13.LOOPE label

Decrease CX, jump to label if CX not zero and Equal (ZF = 1).

14.LOOPZ label

Decrease CX, jump to label if CX not zero and ZF= 1.

15.LOOPNE label

Decrease CX, jump to label if CX not zero and Not Equal (ZF = 0).

16. LOOPNZ label

Decrease CX, jump to label if CX not zero and ZF=0

4. Describe any six addressing modes of 8086 with suitable diagram.

Ans –

Different addressing modes of 8086 :

1. Immediate: In this addressing mode, immediate data is a part of instruction,
and appears in the form of successive byte or bytes.

ex. MOV AX, 0050H

2. Direct: In the direct addressing mode, a 16 bit address (offset) is directly

specified in the instruction as a part of it.

ex. MOV AX ,[1 0 0 0 H]

3. Register: In register addressing mode, the data is stored in a register and it is

referred using the particular register. All the registers except IP may be used in

this mode.

ex. 1)MOV AX,BX

4. Register Indirect: In this addressing mode, the address of the memory location

which contains data or operand is determined in an indirect way using offset

registers. The offset address of data is in either BX or SI or DI register. The

default segment register is either DS or ES.

e.g. MOV AX, BX

5. Indexed: In this addressing mode offset of the operand is stored in one of the

index register. DS and ES are the default segments for index registers SI and DI

respectively

e.g. MOV AX, SI

6. Register Relative: In this addressing mode the data is available at an effective

address formed by adding an 8-bit or 16-bit displacement with the content of any

one of the registers BX, BP, SI and DI in the default either DS or ES segment.

e.g. MOV AX, 50H BX

7. Based Indexed: In this addressing mode the effective address of the data is

formed by adding the content of a base register (any one of BX or BP) to the

content of an index register (any one of SI or DI). The default segment register

may be ES or DS.

e.g MOV AX, BX SI

8. Relative Based Indexed: The effective address is formed by adding an 8-bit or

16-bit displacement with the sum of contents of any one of the base register (BX

or BP) and any one of the index registers in a default segment.

e.g. MOV AX, 50H BX SI

9 .Implied addressing mode:

No address is required because the address is implied in the instruction itself.

e.g NOP,STC,CLI,CLD,STD

5. Select an appropriate instruction for each of the following & write : i)Rotate

the content of DX to write 2 times without carry ii)Multiply content of AX by

06H

iii) Load 4000H in SP register

iv) Copy the contents of BX register to CS v)Signed

division of BL and AL

vi) Rotate AX register to right through carry 3 times.

Ans –

i)

MOV CL,02H ROR

DX,CL

(OR) ROR

DX,03H

ii)

MOV BX,06h MUL BX

iii)

MOV SP,4000H

iv)

The contents if CS register cannot be modified directly , Hence no instructions are

used However examiner can give marks if question is attempted.

v)

IDIV BL

vi)

MOV CL,03H RCR

AX,CL (OR)

RCR AX,03H

6. Write an ALP to arrange numbers in array in descending order.

Ans –

DATA SEGMENT

ARRAY DB 15H,05H,08H,78H,56H

DATA ENDS

CODE SEGMENT

START:ASSUME CS:CODE,DS:DATA

MOV DX,DATA

MOV DS,DX

MOV BL,05H

STEP1: MOV SI,OFFSET ARRAY

MOV CL,04H

STEP: MOV AL,[SI]

CMP AL,[SI+1]

JNC DOWN

XCHG AL,[SI+1]

XCHG AL,[SI]

DOWN:ADD SI,1

LOOP STEP

DEC BL

JNZ STEP1

MOV AH,4CH

INT 21H

CODE ENDS

END START

7. Define logical and effective address. Describe physical address generation

process in 8086. If DS=345AH and SI=13DCH. Calculate physical address.

Ans –

A logical address is the address at which an item (memory cell, storage

element) appears to reside from the perspective of an executing application

program. A logical address may be different from the physical address due

to the operation of an address translator or mapping function.

Effective Address or Offset Address: The offset for a memory operand is

called the operand's effective address or EA. It is an unassigned 16 bit

number that expresses the operand's distance in bytes from the beginning of

the segment in which it resides. In 8086 we have base registers and index

registers.

Generation of 20 bit physical address in 8086:-

1. Segment registers carry 16 bit data, which is also known as base

address.

2. BIU appends four 0 bits to LSB of the base address. This address

becomes 20-bit address.

3. Any base/pointer or index register carries 16 bit offset.

4. Offset address is added into 20-bit base address which finally forms

20 bit physical address of memory location

DS=345AH and SI=13DCH

Physical adress = DS*10H + SI

= 345AH * 10H + 13DCH

= 345A0+13DC

= 3597CH

8. Explain the use of assembler directives. 1) DW 2) EQU 3) ASSUME 4)
OFFSET 5) SEGMENT 6) EVEN

Ans DW (DEFINE WORD)

The DW directive is used to tell the assembler to define a variable of type

word or to reserve storage locations of type word in memory. The statement

MULTIPLIER DW 437AH, for example, declares a variable of type word

named MULTIPLIER, and initialized with the value 437AH when the

program is loaded into memory to be run.

EQU (EQUATE)

EQU is used to give a name to some value or symbol. Each time the

assembler finds the given name in the program, it replaces the name with

the value or symbol you equated with that name.

 Example

Data SEGMENT

Num1 EQU 50H

Num2 EQU 66H

Data ENDS

Numeric value 50H and 66H are assigned to Num1 and Num2.

ASSUME

ASSUME tells the assembler what names have been chosen for Code, Data

Extra and Stack segments. Informs the assembler that the register CS is to be

initialized with the address allotted by the loader to the label CODE and DS

is similarly initialized with the address of label DATA.

OFFSET

OFFSET is an operator, which tells the assembler to determine the offset or

displacement of a named data item (variable), a procedure from the start of

the segment, which contains it.

Example

MOV BX;

OFFSET PRICES;

It will determine the offset of the variable PRICES from the start of the

segment in which PRICES is defined and will load this value into BX.

SEGMENT

The SEGMENT directive is used to indicate the start of a logical segment.

Preceding the SEGMENT directive is the name you want to give the

segment.

For example, the statement CODE SEGMENT indicates to the assembler

the start of a logical segment called CODE. The SEGMENT and ENDS

directive are used to “bracket” a logical segment containing code of data

EVEN (ALIGN ON EVEN MEMORY ADDRESS)

As an assembler assembles a section of data declaration or instruction

statements, it uses a location counter to keep track of how many bytes it is

from the start of a segment at any time. The EVEN directive tells the

assembler to increment the location counter to the next even address, if it is

not already at an even address. A NOP instruction will be inserted in the

location incremented over.

 9. Describe any four string instructions of 8086 assembly language.

 Ans 1] REP:

REP is a prefix which is written before one of the string instructions. It will

cause During length counter CX to be decremented and the string instruction

to be repeated until CX becomes 0.

 Two more prefix.

REPE/REPZ: Repeat if Equal /Repeat if Zero.

It will cause string instructions to be repeated as long as the compared

bytes or words Are equal and CX≠0.

REPNE/REPNZ: Repeat if not equal/Repeat if not zero.

It repeats the strings instructions as long as compared bytes or words are

not equal

And CX≠0.

Example: REP MOVSB

2] MOVS/ MOVSB/ MOVSW - Move String byte or word.

Syntax:

MOVS destination, source

MOVSB destination, source

MOVSW destination, source

Operation: ES:[DI]DS:[SI]

It copies a byte or word a location in data segment to a location in extra

segment. The offset of source is pointed by SI and offset of destination is

pointed by DI.CX register contain counter and direction flag (DE) will be

set or reset to auto increment or auto decrement pointers after one move.

Example

LEA SI, Source

LEA DI, destination

CLD

MOV CX, 04H

REP MOVSB

3] CMPS /CMPSB/CMPSW: Compare string byte or Words.

Syntax:

CMPS destination, source
 CMPSB destination, source

CMPSW destination, source

Operation: Flags affected DS:[SI]- ES:[DI]

It compares a byte or word in one string with a byte or word in another

string. SI Holds the offset of source and DI holds offset of destination

strings. CS contains counter and DF=0 or 1 to auto increment or auto

decrement pointer after comparing one byte/word.

Example

LEA SI, Source

LEA DI, destination

CLD

MOV CX, 100

REPE CMPSB

4] SCAS/SCASB/SCASW: Scan a string byte or word.

Syntax:

SCAS/SCASB/SCASW

Operation: Flags affected AL/AX-ES: [DI]

It compares a byte or word in AL/AX with a byte /word pointed by ES:

DI. The string to be scanned must be in the extra segment and pointed by

DI. CX contains counter and DF may be 0 or 1.

When the match is found in the string execution stops and ZF=1

otherwise ZF=0.

Example

LEA DI, destination

MOV Al, 0DH

MOV CX, 80H

CLD

REPNE SCASB

 5] LODS/LODSB/LODSW:

Load String byte into AL or Load String word into AX.

Syntax:

LODS/LODSB/LODSW

Operation: AL/AX DS: [SI]

IT copies a byte or word from string pointed by SI in data segment into

AL or AX.CX

may contain the counter and DF may be either 0 or 1

Example

LEA SI, destination

CLD

LODSB

6] STOS/STOSB/STOSW (Store Byte or Word in AL/AX)

Syntax STOS/STOSB/STOSW

Operation: ES:[DI] AL/AX

It copies a byte or word from AL or AX to a memory location pointed by

DI in extra

segment CX may contain the counter and DF may either set or reset

 10. Describe any 6 addressing modes of 8086 with one example each.

 Ans 1. Immediate addressing mode:

An instruction in which 8-bit or 16-bit operand (data) is specified in the

instruction, then the addressing mode of such instruction is known as

Immediate addressing mode.

Example:

MOV AX,67D3H

2. Register addressing mode

An instruction in which an operand (data) is specified in general purpose

registers, then the addressing mode is known as register addressing mode.

 Example:

MOV AX,CX

3. Direct addressing mode

An instruction in which 16 bit effective address of an operand is

specified in the instruction, then the addressing mode of such

instruction is known as direct addressing mode.

Example:

MOV CL,[2000H]

4. Register Indirect addressing mode

An instruction in which address of an operand is specified in pointer

register or in index register or in BX, then the addressing mode is

known as register indirect addressing mode.

Example:

MOV AX, [BX]

5. Indexed addressing mode

An instruction in which the offset address of an operand is stored in

index registers (SI or DI) then the addressing mode of such

instruction is known as indexed addressing mode.

DS is the default segment for SI and DI.

For string instructions DS and ES are the default segments for SI and

DI resp. this is a special case of register indirect addressing mode.

Example:

MOV AX,[SI]

6. Based Indexed addressing mode:

An instruction in which the address of an operand is obtained by adding

the content of base register (BX or BP) to the content of an index

register (SI or DI) The default segment register may be DS or ES

Example:

MOV AX, [BX][SI]

7. Register relative addressing mode: An instruction in which the

address of the operand is obtained by adding the displacement (8-bit or

16 bit) with
 the contents of base registers or index registers (BX, BP, SI, DI). The

default segment register is DS or ES.

Example:

MOV AX, 50H[BX]

8. Relative Based Indexed addressing mode

An instruction in which the address of the operand is obtained by

adding the displacement (8 bit or 16 bit) with the base registers (BX

or BP) and index registers (SI or DI) to the default segment.

Example:

MOV AX, 50H [BX][SI]

 11. Select assembly language for each of the following

i) rotate register BL right 4 times

ii) multiply AL by 04H

iii) Signed division of AX by BL

iv) Move 2000h in BX register

v) increment the counter of AX by 1

vi) compare AX with BX

 Ans i) MOV CL, 04H

RCL AX, CL1

Or

 MOV CL, 04H

 ROL AX, CL

Or

MOV CL, 04H

 RCR AX, CL1

 Or
MOV CL, 04H ROR AX, CL

ii) MOV BL,04h

MUL BL

iii) IDIV BL

iv) MOV BX,2000h

v) INC AX

vi) CMP AX,BX

 12. Write an ALP to reverse a string. Also draw flowchart for same.

 Ans Program:

DATA SEGMENT

 STRB DB 'GOOD MORNING$'

 REV DB 0FH DUP(?)

 DATA ENDS

 CODE SEGMENT

 START:ASSUME CS:CODE,DS:DATA

 MOV DX,DATA

 MOV DS,DX

LEA SI,STRB

MOV CL,0FH

LEA DI,REV

 ADD DI,0FH

 UP:MOV AL,[SI]

 MOV [DI],AL

INC SI

DEC DI

LOOP UP

MOV AH,4CH

INT 21H

CODE ENDS

END START

Flowchart:

13. Define logical and effective address. Describe Physical address generation in

8086. If CS = 2135 H and IP = 3478H, calculate Physical Address.

Ans A logical address: A logical address is the address at which an item (memory cell, storage

element) appears to reside from the perspective of an executing application program. A

logical address may be different from the physical address due to the operation of an

address translator or mapping function.

Effective Address or Offset Address: The offset for a memory operand is called the

operand's effective address or EA. It is an unassigned 16-bit number that expresses the

operand's distance in bytes from the beginning of the segment in which it resides. In 8086

we have base registers and index registers.

Procedure for Generation of 20-bit physical address in 8086: -

1. Segment registers carry 16-bit data, which is also known as base address.

2. BIU appends four 0 bits to LSB of the base address. This address becomes 20-bit

address.

3. Any base/pointer or index register carries 16 bits offset.

4. Offset address is added into 20-bit base address which finally forms 20-bit physical

address of memory location

CS=2135H and IP=3475H

Physical address = CS*10H + IP

= 2135H * 10H + 3475H

= 21350 + 3475

= 247C5H

14. Explain the following assembler directives:

(i) DB (ii) DW (iii) EQU (iv) DUP (v) SEGMENT (vi) END

Ans (i) DB (Define Byte) – The DB directive is used to declare a BYTE -2-BYTE

variable – A BYTE is made up of 8 bits. Declaration

Examples:

 Byte1 DB 10h

Byte2 DB 255; 0FFh, the max. possible for a BYTE

CRLF DB 0Dh, 0Ah, 24h; Carriage Return, terminator BYTE

(ii) DW (Define Word): The DW directive is used to tell the assembler to

define a variable of type word or to reserve storage locations of type word

in memory. The statement MULTIPLIER DW 437AH.

Example, declares a variable of type word named MULTIPLIER, and

initialized with the value 437AH when the program is loaded into

memory to be run.

(iii) EQU (EQUATE): EQU is used to give a name to some value or symbol.

Each time the assembler finds the given name in the program, it replaces

the name with the value or symbol you equated with that name.

Example -

Data SEGMENT Num1 EQU 50H Num2 EQU 66H

Data ENDS

Numeric value 50H and 66H are assigned to Num1 and Num2.

(iv) DUP: - It can be used to initialize several locations to zero.

e. g. SUM DW 4 DUP(0)

- Reserves four words starting at the offset sum in DS and initializes

them to Zero.

- Also used to reserve several locations that need not be initialized. In

this case (?) is used with DUP directives.

E. g. PRICE DB 100 DUP(?)

- Reserves 100 bytes of uninitialized data space to an offset PRICE.

(v) SEGMENT: - The SEGMENT directive is used to indicate the start of a

logical segment. Preceding the SEGMENT directive is the name you want

to give the segment. For example, the statement CODE SEGMENT

indicates to the assembler the start of a logical segment called CODE. The

SEGMENT and ENDS directive are used to “bracket” a logical segment

containing code of data.

(vi) END: - An END directive ends the entire program and appears as the last

statement. –

ENDS directive ends a segment and ENDP directive ends a procedure. END

PROC-Name

15. Explain with suitable example the Instruction given below :

(i) DAA (ii) AAM

Ans (i) DAA – Decimal Adjust after BCD Addition: When two BCD numbers are

added, the DAA is used after ADD or ADC instruction to get correct answer in BCD.

Syntax- DAA (DAA is Decimal Adjust after BCD Addition)

Explanation: This instruction is used to make sure the result of adding two packed BCD

numbers is adjusted to be a correct BCD number. The result of the addition must be in

AL for DAA instruction to work correctly. If the lower nibble in AL after addition is > 9

or Auxiliary Carry Flag is set, then add 6 to lower nibble of AL. If the upper nibble in AL

is > 9H or Carry Flag is set, and then add 6 to upper nibble of AL.

Example: - (Any Same Type of Example)

AL=99 BCD and BL=99 BCD

Then ADD AL, BL

1001 1001 = AL= 99 BCD +

1001 1001 = BL = 99 BCD

0011 0010 = AL =32 H

and CF=1, AF=1 After the execution of DAA instruction, the result is CF = 1 0011 0010

=AL =32 H AH =1 + 0110 0110 ------------------------- 1001 1000 =AL =98 in BCD

(ii) AAM - Adjust result of BCD Multiplication: This instruction is used after the

multiplication of two unpacked BCD.

The AAM mnemonic stands for ASCII adjust for Multiplication or BCD Adjust after

Multiply. This instruction is used in the process of multiplying two ASCII digits. The

process begins with masking the upper 4 bits of each digit, leaving an unpacked BCD in

each byte. These unpacked BCD digits are then multiplied and the AAM instruction is

subsequently used to adjust the product to two unpacked BCD digits in AX.

AAM works only after the multiplication of two unpacked BCD bytes, and it works only

on an operand in AL.

Example

Multiply 9 and 5

MOV AL, 00000101

MOV BH, 00001001

MUL BH ;Result stored in AX

;AX = 00000000 00101101 = 2DH = 45 in decimals

AAM ;AX = 00000100 00000101 = 0405H = 45 in unpacked BCD

; If ASCII values are required an OR operation with 3030H can follow this step.

16.

Ans-

Write an appropriate 8086 instruction to perform following operations.

(i) Rotate the content of BX register towards right by 4 bits.

(ii) Rotate the content of AX towards left by 2bits.

(iii) Add 100H to the content of AX register.

(iv) Transfer 1234H to DX register.

(v) Multiply AL by 08 H.

(vi) Signed division of BL and AL

1. Rotate the content of BX register towards right by 4 bits –

MOV CL, 04H

ROR BX, CL

2. Rotate the content of AX towards left by 2bits –

MOV CL, 02H

ROL AX, CL

3. Add 100H to the content of AX register –

ADD AX,0100H.

4. Transfer 1234H to DX register –

MOV DX,1234H

5. Multiply AL by 08H –

MOV BL,08h

MUL BL

Signed division of BL and AL IDIV BL

17. Explain Addressing modes of 8086 with suitable example.

Ans 1. Immediate addressing mode: An instruction in which 8-bit or 16-bit operand

(data) is specified in the instruction, then the addressing mode of such instruction

is known as immediate addressing mode.

Example: MOV AX,67D3H

2. Register addressing mode: An instruction in which an operand (data) is specified

in general purpose registers, then the addressing mode is known as register

addressing mode.

Example: MOV AX, CX

3. Direct addressing mode: An instruction in which 16-bit effective address of an

operand is specified in the instruction, then the addressing mode of such

instruction is known as direct addressing mode.

Example: MOV CL,[2000H]

4. Register Indirect addressing mode: An instruction in which address of an operand

is specified in pointer register or in index register or in BX, then the addressing

mode is known as register indirect addressing mode.

Example: MOV AX,[BX]

5 Indexed addressing mode: An instruction in which the offset address of an operand

is stored in index registers (SI or DI) then the addressing mode of such instruction

is known as indexed addressing mode. DS is the default segment for SI and DI.

For string instructions DS and ES are the default segments for SI and DI resp. this

is a special case of register indirect addressing mode.

Example: MOV AX,[SI]

6. Based Indexed addressing mode: An instruction in which the address of an

operand is obtained by adding the content of base register (BX or BP) to the

content of an index register (SI or DI) The default segment register may be DS or

ES

Example: MOV AX,[BX][SI]

7. Register relative addressing mode: An instruction in which the address of the

operand is obtained by adding the displacement (8-bit or 16 bit) with the contents

of base registers or index registers (BX, BP, SI, DI). The default segment register

is DS or ES.

Example: MOV AX,50H[BX]

8. Relative Based Indexed addressing mode: An instruction in which the address of

the operand is obtained by adding the displacement (8 bit or 16 bit) with the base

registers (BX or BP) and index registers (SI or DI) to the default segment.

 Example: MOV AX,50H [BX][SI]

18. Write an ALP to transfer 10 bytes of data from one memory location to

another, also draw the flow chart of the same.

Ans Data Block Transfer Using String Instruction

.MODEL SMALL
 .DATA
 BLOCK1 DB 01H,02H,03H,04H,05H,06H,07H,08H,09H,0AH

BLOCK2 DB 10(?)
 ENDS

.CODE

 MOV AX, @DATA
 MOV DS, AX
 MOV ES, AX

LEA SI, BLOCK1

 LEA DI, BLOCK2

MOV CX, 000AH ; Initialize counter for 10 data elements

CLD

 REP MOVSB

MOV AH, 4CH

 INT 21H
 ENDS
 END

OR

Data Block Transfer Without String Instruction

. Model small

. Data

ORG 2000H

Arr1 db 00h,01h,02h,03h,04h,05h,06h,07h,08h,09h

Count Equ 10 Dup

Org 3000H

Arr2 db 10 Dup(00h)

Ends

.code

Start: Mov ax,@data

Mov ds,ax

Mov SI,2000H

Mov DI,3000H

Mov cx, count

Back: Mov al, [SI]

Mov [DI], al

Inc SI

Inc DI

Dec cx

Jnc Back

Mov ah, 4ch

Int 21h

Ends

End

